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Several lines of evidence suggest that angiotensin-

converting enzyme (ACE) inhibitors and some angiotensin

II receptor blockers (ARBs) may improve insulin sensitivity

and decrease the risk for type 2 diabetes. It is widely

assumed that the potential antidiabetic properties of these

agents are largely mediated by their ability to interfere with

the adverse metabolic effects of angiotensin II. However,

recent studies suggest that ACE inhibitors might improve

glucose metabolism primarily through effects on kinin–

nitric oxide pathways. In addition, one ARB in particular,

telmisartan, has been found to effectively activate the

peroxisome proliferator activated receptor gamma

(PPARª), a well-known target for insulin-sensitizing,

antidiabetic drugs. Thus, the beneficial metabolic effects of

some ACE inhibitors and ARBs may go well beyond their

effects on the renin–angiotensin system. Moreover, the

identification of telmisartan as a unique angiotensin II

receptor antagonist with selective PPARª modulating

ability suggests new opportunities for developing third-

generation ARBs and PPARª activators, with enhanced

potential for treating hypertension, diabetes and the

metabolic syndrome. J Hypertens 22:2253–2261 & 2004
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Introduction
Growing concern about the increasing prevalence of

the metabolic syndrome and type 2 diabetes has gener-

ated substantial interest in the metabolic effects of

antihypertensive drugs [1–4]. Historically, most of the

focus has been on disturbances in carbohydrate and

lipid metabolism associated with diuretics and beta-

blockers. However, the results of several large-scale

clinical trials have recently begun to shift attention to

the possibility that some of the newer antihypertensive

agents may not only cause fewer metabolic side-effects

than diuretics and beta-blockers, but may also decrease

the overall risk for type 2 diabetes [5–10]. Given the

morbidity and mortality associated with type 2 diabetes

and hypertension, the availability of drugs that have

antidiabetic as well as antihypertensive properties could

be of considerable clinical value.

Antidiabetic effects of interrupting the
renin–angiotensin system
In vitro experiments and studies in animals and in

humans have suggested a possible relationship between

the renin–angiotensin system and the pathogenesis of

insulin resistance. For example, recent studies have

suggested that angiotensin II (AII) may promote im-

paired glucose metabolism through its effects on insulin

signaling pathways, tissue blood flow, oxidative stress,

sympathetic activity and adipogenesis [11–25]. Thus,

pharmacologic interruption of the renin–angiotensin

system (RAS) with angiotensin-converting enzyme

(ACE) inhibitors or angiotensin II receptor blockers

(ARBs) might improve glucose metabolism by interfer-

ing with AII generation or AII receptor activation

(Table 1). These observations have begun to motivate

clinical trials designed to investigate whether drugs that

interrupt the RAS can ward off the development of

type 2 diabetes. Indeed, given some of the evidence

accumulated to date, it is possible that pharmacologic

interruption of the RAS may someday prove capable of

improving insulin sensitivity and decreasing the risk for

diabetes. However, this review focuses on the alterna-

tive notion that ACE inhibitors and ARBs differ in their

capacity to affect insulin sensitivity, and that interrup-

tion of the RAS may not be the sole, or even central,
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mechanism that mediates the apparent antidiabetic

properties of some of these drugs. The metabolic

effects of molecules that interrupt the renin–angioten-

sin system may differ both between and within various

drug classes and it is conceivable that some of these

agents may improve insulin sensitivity and decrease the

risk for diabetes much more effectively than others.

Antidiabetic effects and mechanisms of
converting enzyme inhibition
Recent studies in experimental animal models and in

small- and large-scale clinical trials have suggested that

ACE inhibitors may have the capacity to increase

insulin sensitivity and/or decrease the risk of type 2

diabetes [5–7,24,26–33]. Although the data are not

conclusive, the results of these studies have been

sufficiently interesting to motivate the design of pro-

spective, placebo-controlled randomized trials to inves-

tigate the ability of ACE inhibitors to decrease the

incidence of new-onset type 2 diabetes as a primary

end-point [4,34]. For example, in the placebo-

controlled DREAM study, investigators will determine

if the ACE inhibitor ramipril, the thiazolidinedione

rosiglitazone, or both drugs in combination can delay or

prevent the development of type 2 diabetes (T2DM)

in subjects with impaired glucose tolerance (IGT) or

impaired fasting glucose (IFG). Enrollment was com-

pleted in 2003, with over 5000 patients (4531 with IGT

and 738 with IFG) who will be followed for at least 3

years to determine the occurrence of new-onset T2DM

or all-cause mortality as primary outcomes [35].

As noted, ACE inhibitors might improve insulin sensi-

tivity by interfering with AII generation, thereby limit-

ing adverse effects of AII on glucose metabolism

(Table 1). However, recent studies have suggested that

the antidiabetic properties of ACE inhibitors may be

largely mediated through increases in bradykinin levels,

nitric oxide and the GLUT4 glucose transporter (Table

2) [24,26–31,36,37]. For example, metabolic studies in

animals lacking bradykinin B2 receptors and in animals

treated with both an ACE inhibitor and a bradykinin

antagonist strongly suggest that the insulin-sensitizing

effects of ACE inhibitors involve more than just reduc-

tions in angiotensin II levels [24,28,36,37]. Increases in

bradykinin levels stemming from converting enzyme

inhibition may improve glucose metabolism by affect-

ing insulin signaling pathways, nitric oxide production

and translocation of GLUT4 [24,28–30]. A potential

role for bradykinin in the insulin-sensitizing actions of

converting enzyme inhibition is further suggested by

the inconsistent effects of angiotensin II receptor

blockade on glucose metabolism [8,24,26,31,38].

Antidiabetic effects and mechanisms of
angiotensin II receptor blockade
To the extent that the antidiabetic effects of ACE

inhibitors are secondary to interference with angioten-

sin II-dependent mechanisms that promote insulin

resistance (Table 1), one might expect ARBs to be

similarly as effective as ACE inhibitors, if not more

effective, in improving insulin resistance and prevent-

ing type 2 diabetes (Table 1). In a small, single-blind,

placebo-controlled study using the euglycemic hyper-

insulinemic clamp technique in hypertensive patients,

Paolisso et al. [15] reported that losartan-induced in-

creases in whole-body glucose disposal were correlated

with losartan-induced increases in femoral artery blood

flow. However, few head-to-head comparisons have

been made of the insulin-sensitizing effects of ACE

inhibitors versus ARBs and, to date, no large-scale

clinical trials have compared the ability of ACE inhibi-

tors and ARBs to decrease the risk for diabetes. In

several randomized, blinded, placebo-controlled studies

that have been performed with the euglycemic hyper-

insulinemic clamp technique, different ACE inhibitors

have been found to improve insulin sensitivity, whereas

the ARB losartan has been found to have comparatively

little or no effect on insulin action [24,39–41]. Some

investigators have also suggested that the inhibitory

effects of AII on insulin-signaling pathways may not be

mediated by either type 1 or type 2 angiotensin II

receptors and that another type of angiotensin receptor

may be involved [13]. If so, this could further explain

why ACE inhibitors might be more effective in improv-

ing insulin sensitivity than at least some ARBs.

Clinical trials using ARBs have provided some indirect

support for the possibility that angiotensin II receptor

blockade per se may improve insulin sensitivity and

decrease the incidence of type 2 diabetes. In the LIFE

trial, the incidence of new-onset type 2 diabetes was

reported to be significantly lower in hypertensive sub-

jects treated with losartan than in those treated with
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Table 1 Potential antidiabetic mechanisms of interrupting the
renin–angiotensin system

Both ACE inhibitors and ARBs may interfere with adverse effects of angiotensin
II on:

Insulin signaling
Tissue blood flow
Oxidative stress
Sympathetic activity
Adipogenesis

ACE, angiotensin-converting enzyme; ARBs, angiotensin receptor blockers.

Table 2 Antidiabetic mechanisms of ACE inhibitors and particular
ARBs that may go beyond their effects on the renin–angiotensin
system

ACE inhibitors may enhance glucose metabolism by:
Activating bradykinin/nitric oxide pathways

Particular ARBs (e.g. telmisartan) may improve glucose and lipid metabolism by:
Activating PPARª

ACE, angiotensin-converting enzyme; ARBs, angiotensin receptor blockers;
PPARª, peroxisome proliferator activated receptor gamma.
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atenolol, suggesting potential antidiabetic effects of

angiotensin receptor blockade [8]. However, it should be

noted that the LIFE trial did not include a placebo

control. Given the known diabetogenic effects of beta-

adrenergic blockers, it is possible that the lower inci-

dence of new-onset diabetes in the losartan arm of the

trial was related to a pro-diabetic effect of atenolol,

rather than an anti-diabetic effect of angiotensin recep-

tor blockade. In the recent VALUE trial, the incidence

of new-onset type 2 diabetes was observed to be lower

in hypertensive subjects treated with valsartan than in

those treated with amlodipine [10]. As in the LIFE trial,

a placebo control could not be included in the VALUE

trial. Thus, while the VALUE trial indicates that the risk

for developing new-onset type 2 diabetes is either lower

or delayed in patients treated with valsartan than in

those treated with amlodipine, it does not establish that

angiotensin receptor blockade per se reduces or delays

the onset of type 2 diabetes. However, it is generally

believed that calcium-channel antagonists such as amlo-

dipine are metabolically neutral. If this is correct, the

lower incidence of new-onset diabetes in the valsartan-

treated subjects might well be reflecting an antidiabetic

effect of angiotensin II receptor blockade.

In contrast to the LIFE and VALUE trials, the

CHARM Preserved, CHARM Alternative, CHARM

Added, and SCOPE trials included placebo controls

[9,42–44]. These placebo-controlled trials directly

tested whether angiotensin receptor blockade could

decrease the risk for new-onset diabetes as a pre-

specified endpoint. In the CHARM Preserved trial, the

incidence of new-onset type 2 diabetes was significantly

lower in subjects given candesartan than in those given

placebo [9]. However, in the other placebo-controlled

trials, including CHARM Alternative [42], CHARM

Added [43] and SCOPE [44], there was no significant

difference in the incidence of new-onset diabetes in

subjects given candesartan compared to controls. In the

ALPINE [45] and CROSS [38] studies, in which the

effects of candesartan on glucose and lipid metabolism

were directly investigated, the administration of cande-

sartan had no effect on serum levels of insulin, glucose

or triglycerides. Although candesartan treatment ap-

peared to improve an indirect estimate of insulin action

in the CROSS study [38], it failed to show any effect

on the HOMA index of insulin resistance in the

ALPINE study [45]. In summary, several clinical trials

have suggested that angiotensin receptor blockade

might exert protective effects on glucose metabolism.

However, most of the placebo-controlled trials (all

performed with candesartan) have failed to show an

antidiabetic effect of angiotensin receptor blockade.

The results of studies designed to directly investigate

the metabolic effects of candesartan have also failed to

show any beneficial effects of angiotensin receptor

blockade on glucose, insulin or triglyceride levels.

Despite data suggesting that candesartan is metaboli-

cally neutral, the metabolic effects of ARBs could vary,

and some ARBs might have greater effects on glucose

and lipid metabolism than others. Thus, the results of

ongoing, placebo-controlled clinical trials designed to

investigate the metabolic effects of other ARBs will be

of considerable interest in this regard. For example, in

the ONTARGET trial, subjects at increased risk for

cardiovascular events, including many subjects at in-

creased risk for diabetes, will be randomized to receive

either telmisartan, ramipril or a combination of telmi-

sartan and ramipril [46,47]. In the companion TRANS-

CEND trial, subjects that are intolerant of ACE

inhibitors but are otherwise similar to those enrolled in

ONTARGET will be randomized to placebo or telmi-

sartan [46,47]. Reduction in the incidence of new-onset

type 2 diabetes will be a secondary endpoint in both of

these trials. Taken together, the ONTARGET and

TRANSCEND trials are of considerable interest be-

cause this program not only includes a placebo control,

but also head-to-head comparisons of the antidiabetic

effects of an ARB, an ACE inhibitor, and the combina-

tion of both an ARB and an ACE inhibitor. The

ONTARGET trial finalized recruitment of 25 260 sub-

jects in May of 2003 and the TRANSCEND trial

finalized recruitment of 5926 subjects in April of 2004.

Because these studies are ‘event driven’, there is no

fixed timeline but the expectation is that results will be

available in 2007. The NAVIGATOR trial is investigat-

ing whether the oral antidiabetic agent nateglinide or

the ARB valsartan can prevent diabetes as a primary

endpoint in individuals with impaired glucose tolerance

who are at high risk for cardiovascular events [48]. This

randomized, double-blind, placebo-controlled trial in-

volves over 7000 subjects, and the diabetes end-point

will be assessed 3 years after the last trial participant is

enrolled.

Do some ARBs have antidiabetic effects that
are independent of RAS blockade?
Most studies investigating the metabolic effects of

angiotensin II receptor blockade have focused on the

use of losartan, or other ARBs, such as candesartan, that

bear a close structural resemblance to losartan. It should

be noted, however, that one ARB in particular, telmi-

sartan, appears to be structurally quite distinct from all

other angiotensin II antagonists in clinical use today.

Most of the commonly used ARBs are structurally

similar to losartan and are biphenyl tetrazole derivatives

(Fig. 1). In contrast, telmisartan is a highly lipid

soluble, non-tetrazole derivative, with a single car-

boxylic acid group instead of the large tetrazole ring. A

graphic example of the unique chemical nature of

telmisartan is illustrated by its extraordinarily high

volume of distribution relative to other commonly used

ARBs (Fig. 2). The only other non-tetrazole ARB,

eprosartan (not shown), includes carboxylic acid groups
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at both ends of the molecule and it is less lipid soluble

than telmisartan. Thus, although some studies with

ARBs such as losartan and candesartan suggest that

angiotensin receptor blockade may have limited effects

on insulin sensitivity or glucose and lipid levels [39–

45], they do not speak to the potential metabolic

effects of structurally distinct ARBs such as telmisartan.

The tacit assumption that underlies the interpretation

of most studies involving ARBs is that these molecules

Copyright © Lippincott Williams & Wilkins. Unauthorized reproduction of this article is prohibited.
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Chemical structures of the most widely used angiotensin receptor blockers (ARBs), illustrating the unique nature of telmisartan. The circle encloses
the biphenyl tetrazole moiety that is common to losartan and its related ARBs.
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Volumes of distribution of the most widely used angiotensin receptor blockers (ARBs), including the active metabolite of losartan. Telmisartan has a
much greater volume of distribution than other ARBs.
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interact only with the angiotensin II receptor and,

therefore, that most, if not all, of their biologic proper-

ties are secondary to AII receptor blockade. However,

this assumption appears to be incorrect, as we have

found that telmisartan has unique chemical properties

that may enable it to target insulin resistance and

diabetes therapeutically at the molecular level through

mechanisms that are unrelated to blockade of the

renin–angiotensin system (Table 2) [49,50].

Identification of telmisartan as a structurally
unique ARB with selective PPARª modulating
ability
Recently, we [49,50] reported that telmisartan bears

an interesting structural resemblance to the insulin

sensitizer pioglitazone, a thiazolidinedione ligand of

the peroxisome proliferator activated receptor gamma

(PPARª) approved for the treatment of type 2 diabetes

(Fig. 3). PPARª is a member of the nuclear hormone

receptor superfamily and functions as a transcription

factor that regulates the expression of multiple genes

involved in carbohydrate and lipid metabolism and

inflammation [51–56]. While PPARª is principally ex-

pressed in adipose tissue, it can be found in a variety of

cells, including vascular smooth muscle cells, endothe-

lial cells and monocytes. In addition to improving

insulin sensitivity, PPARª activators can ameliorate

multiple pathogenetic determinants of atherosclerosis

(Table 3) [51–59]. Thus, intense interest exists in the

potential use of thiazolidinediones and other PPARª
activators for prevention and treatment of coronary

vascular disease, as well as for the prevention and

treatment of diabetes [51–59]. These observations,

together with reports that mutations in PPARª are

associated with severe insulin resistance and dyslipide-

mia [60], have clearly established PPARª as a valuable

target for the development of antidiabetic and anti-

atherosclerotic drugs. Large-scale clinical trials de-

signed to investigate prospectively the cardioprotective

effects of PPARª activators are currently under way

[35,61]. Although the first clinically approved thiazoldi-

nedione ligand of PPARª (troglitazone) was withdrawn

from the market because of hepatotoxicity, this does

not appear to be a class effect, because liver toxicity

has not been an issue with other PPARª activators,

such as pioglitazone or rosiglitazone [62].

Benson and colleagues [49,50] have demonstrated that

telmisartan can function as a partial agonist of PPARª,

influence the expression of PPARª target genes in-

volved in carbohydrate and lipid metabolism, and

reduce glucose, insulin and triglyceride levels in rats

fed a high-fat, high-carbohydrate diet. None of the

other clinically approved ARBs appears to activate

PPARª when tested at maximal concentrations that

might be achieved in plasma with conventional oral

dosing (Fig. 4) (T. Kurtz, unpublished observations)

[49,50]. When tested at relatively high concentrations

(10 �mol/l or above), irbesartan appears to have some

potential to activate PPARª, although it is unclear

whether its effects on PPARª will be achievable with

normal oral dosing [49,50]. Recently, Schupp et al. [63]

have confirmed that telmisartan can act as a PPARª
agonist when tested at therapeutically relevant concen-

trations, and that relatively high concentrations of

irbesartan can also activate PPARª. The ability of

telmisartan and irbesartan to activate PPARª appears to

be independent of AII receptor blockade, as Schupp

et al. [63] have further noted that these molecules can

activate PPARª in cells that lack AII type 1 receptors.

By virtue of its unique ability to activate PPARª at

reasonable concentrations, telmisartan may have a

greater potential than other ARBs to improve the

disturbances in carbohydrate and lipid metabolism that

often accompany hypertension as part of the metabolic

syndrome, type 2 diabetes or both. Consistent with this

possibility, a case study and a small-scale clinical trial

were recently reported, in which telmisartan improved

biochemical features of the metabolic syndrome and

diabetes whereas valsartan and eprosartan did not
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Fig. 3

Comparison of the chemical structures of telmisartan and the
peroxisome proliferator activated receptor gamma (PPARª) ligand,
pioglitazone. AII, angiotensin II.

Table 3 Potential anti-atherosclerotic mechanisms of PPARª
activators

Increase insulin sensitivity
Decrease fatty acid and triglyceride levels
Increase reverse cholesterol transport and HDL levels
Increase buoyancy of LDL particles
Decrease inflammation
Decrease oxidative stress
Decrease blood pressure
Decrease vascular smooth muscle cell proliferation and migration

PPARª, peroxisome proliferator activated receptor gamma; HDL, high-density
lipoprotein cholesterol; LDL, low-density lipoprotein cholesterol.
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[64,65]. However, systematic clinical trials such as

ONTARGET and TRANSCEND will be required to

help determine the extent to which the ability of

telmisartan to selectively modulate PPARª affords

metabolic benefits beyond its effects on the renin–

angiotensin system [46,47,66].

Many of the mechanisms involved in the pathogenesis

of atherosclerosis can be modulated by PPARª, angio-

tensin II or both (Fig. 5) [25,57,59]. Theoretically,

multifunctional compounds such as telmisartan, which

simultaneously activate PPARª and block the angioten-

sin II type 1 receptor, should be particularly effective

in preventing atherosclerotic cardiovascular disease in

patients with hypertension or diabetes (Fig. 5). More-

over, activation of PPARª has been reported to de-
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Potential influence of telmisartan on pathways that are likely primarily to mediate the anti-atherosclerotic effects of peroxisome proliferator activated
receptor gamma (PPARª) activation and angiotensin II receptor blockade.
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crease expression of the angiotensin II type 1 receptor

gene and inhibit the effects of angiotensin II on intra-

cellular signaling pathways [67–69]. These PPARª-

related actions could further contribute to the ability of

telmisartan to interfere with the adverse cardiovascular

effects of angiotensin II.

It should be emphasized that telmisartan belongs to a

category of molecules known as selective PPAR gamma

modulators (SPPARMs) [70,71]. The SPPARMs differ

from conventional PPARª activators such as rosigli-

tazone and pioglitazone in a number of important

respects. Rosiglitazone, pioglitazone and other conven-

tional PPARª activators typically function as full ago-

nists of the receptor and affect the expression of a very

broad range of genes, whereas SPPARMs, such as

telmisartan, function as partial agonists, with more

restricted effects on gene expression [50,71]. SPPARMs

influence the expression of some, but not all, of the same

target genes regulated by conventional PPARª activators

[50,71]. The overlapping, yet differential, effects on

gene expression of SPPARMs versus conventional

PPAR ligands may mediate some of the similarities and

differences in their biologic effects. For example, in

rodent models of insulin resistance and obesity induced

by administration of high fat, high carbohydrate diets,

both conventional PPARª activators and SPPARMs can

improve carbohydrate and lipid metabolism [50,71].

However, in these models the conventional PPARª
activators also promote weight gain and accumulation of

body fat, whereas SPPARMs such as telmisartan and

nTZDpa (an experimental Merck compound) do not. In

fact, both telmisartan and nTZDpa appear to attenuate

diet-induced increases in weight gain and body fat

independent of effects on energy intake (T. Kurtz,

unpublished observations) [50,71].

The precise mechanisms that mediate the ability of

SPPARMs such as telmisartan to attenuate diet-

induced increases in body weight and body fat remain

to be determined. However, it is possible that some of

these molecules may be affecting energy balance by

influencing the expression of genes involved in fatty

acid metabolism [50,71]. It should also be noted that

some of the weight gain associated with administration

of conventional PPARª activators is likely caused by

renal salt and water retention occurring secondary to

reflex activation of the renin–angiotensin–aldosterone

system [72]. Thus, SPPARMs such as telmisartan,

which also have the ability to block angiotensin II

receptors, should be much less likely to cause fluid

retention and edema than conventional PPARª ligands.

Given that patients with hypertension and diabetes are

already at increased risk for myocardial dysfunction, the

availability of insulin-sensitizing PPARª activators that

do not promote fluid retention and edema would be of

considerable clinical value.

Conclusions
Tantalizing experimental and clinical evidence suggests

that at least some drugs that interrupt the renin–

angiotensin system may improve glucose and lipid

metabolism and decrease the risk for type 2 diabetes.

Although some of the antidiabetic properties of ACE

inhibitors and ARBs might be mediated by their ability

to interfere with adverse effects of angiotensin II on

carbohydrate and lipid metabolism, it is also possible

that the beneficial metabolic effects of ACE inhibitors

and certain ARBs go well beyond just simple interrup-

tion of the renin–angiotensin system. Studies with

bradykinin receptor knockout mice and with bradykinin

antagonists indicate that ACE inhibitors might improve

glucose metabolism through effects on kinin–nitric

oxide pathways. In addition, one ARB in particular,

telmisartan, has been found to effectively activate

PPARª, a well-known target for insulin-sensitizing,

antidiabetic drugs. Thus, it is possible that ARBs will

show significant differences in their metabolic actions.

The identification of telmisartan as a unique angio-

tensin II receptor antagonist with selective PPARª-

modulating ability suggests new opportunities for

developing third-generation ARBs and PPARª activa-

tors, with enhanced potential for treating hypertension,

diabetes and the metabolic syndrome. The results of

ongoing and future clinical trials should help to answer

whether recent experimental findings on the anti-

diabetic potential of certain ACE inhibitors and ARBs,

including telmisartan, will ultimately prove relevant to

clinical practice.
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